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Abstract We have derived an exact test for the parameter vector of the Box-Cox difference transformation in
linear regression models. By utilizing Taylor series approximations this reduces to a choice between two
regression equations. The test statistic which has an exact F-distribution can be easily calculated from these two
regressions by least squares algorithm. Monte Carlo results have demoenstrated that our proposed procedure is
generally more capable than the likelihood approach in stating the correct size of the test, yet it is equally
powerful to the latter in rejecting false null hypotheses. It is therefore a simple and ready statistical procedure for
assessing the suitable choice of the combination of the changes or relative changes in econometric forecast
models, thereby allowing more flexible and appropriate economic relations be formulated and their validity be

tested.

i. Introduction

Econometric models are often formulated in terms
of some functional form of the variable which may
be generalized by the Box-Cox transformation:
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where | y!E is a positive series of an economic

vartuble and A is a Box-Cox transformation
parameter. Typicalty many econometric
applications examine not the level of the variable,
but its change per time pericd. Examples include
the St. Louis equation due i Anderson et al.
[1970], the money demand model by Hafer et al.
[1980] and the consumer index of Colclough et al.
[1982]. A discrete approximation to the time
derivative of y* is given by Layson et al. [1984] as
12 aW=yiay, =1, T,

where Ay, = ¥ - y. denotes the change of first
difference. The usefulness of (1.2) is that A=}
yields the first difference while A=0 gives the
relative or percentage change. This is termed the
Box-Cox difference transtormation by Seaks et al.
{1990}, Both the first difference and the percentage
change of an economic variable may therefore be
generalized by Ay'". Thus a regression model
which utilizes both the fust difference and the
percentage change can be represented by
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where 4, (i=1, .., @) a.re Box-Cox difference

transformation parameters, i, {f=1, 2, ., p) are
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observations on the p independent variables which

(4}

are not transformed, Ay, is defined as in (1.2},

Az (=2, ..., q) are similarly defined, @ (j=1.
o pyand B (i=2, ..., g) are regression coefficients,
and & is the error term. We may regard (1.3) as a
general model in which the transformed parameters
permit more general forms than first differences or
percentage changes though A =0 or 1 has a
straightforward and simple interpretation.

Unfortunately model selection is a very difficult
task in practice. As Dhrymes et al. [1972, p294]
have pointed out that economic theory typically
provides little guidance as to the proper functional
form appropriate to the specification of the
economic refationships. The choice of suitable
functional forms in econometric applications thus
relies  heavily upon  established  statistical
procedures.

in this paper, we shall develop an Andrews [1971]
type procedure for testing the choice of the set of
Box-Cox difference transformation parameters in
{1.3), allowing different transformation parameters
for different variables. Its statistical methodology
follows the line of Milliken et al. [19707 and is
based on the F-distribution. Section 2 reviews
existing single transformation parameter
procedures. In section 3 we shall develop the
testing procedure which reduces to a choice
between two regression equations. The alternative
regiession, though of no economic interest, is easy
to understand. Section 4 outlines the steps how the
test statistic can be computed using a standard
statistical package. In section 5 the new procedure
is compared with the likelihood ratio approach by



Monte Carlo models. Section § presents the
conclusions of this paper.

2. Single Transformation Parameter
IExisting procedures include the likelihood ratio
(LR) test and variants of the Lagrange muitiplier
(LW tests. They assume the samne transformation
parameter be used on both the dependent and
independent variables. The procedure of Layson et
al. [1984] is primarily a LR test. It requires a search
for an optimal solution of the uvnrestricted model
which in practice can be completed by a sequence
of regressions on transformed data with various
values of the transtormation parameter over a grid.
Though the first difference of the dependent
variable and percentage change of the regressor are
used in the poverty and growth model of Thornton
et al. [1978], Layson et al. {19847 have only applied
their procedure to test the latter choice but not the
use of the first difference of the dependent variable.
The search could be very expensive if not
impossible  when  different  parameters of
transtformation are allowed. Those of Coulson et al.
[1985] and of Park [1991] are different variants of
LM tests, constructed from rather complicated
auxiliary regressions in which the regressors
involve either the time derivatives of the
transformed variables or the derivatives of the
unrestricted log-likelihood function with respect to

the individual variables. The regressions are
artificiaily constructed to generate tests for
misspecification  and  their relations {o  the

hypothesis to be tested are not obvicus. The
computation involved is by no means simpie or
straightforward.  Further, the LR and LM
procedures are asymptotic and therefore are only

approximate in  small and moderate sample
situations.
3. The Test Procedure

Using matrix notation we may express (1.3) as

(3.1 Ay = Xo+ AZPB + g

where  A.=( Az .. A, Ay(’]“) is the Tx1 vector
of transformed dependent variables, X is the Txp
matrix ~ of  original  independent  variables,

(4,

AZ™ = (a2 Az a2y ks the Tx(g-l)

matrix of transformed independent variables, a={c
o o) s apxland B=(B; B ... B isa (g-1px1
vectors of coefficients, and £ is the T vector of
independently and normally distributed
dl;sturbances with zero mean and constant variance
.

Expanding &y{'l“‘j in Taylor series about 2

hypothetical value /1(10} yields
32 Ay =ay 10, - AHwa?)
where w( ;%{10) )=3Ayu“)/8/1; evaluated at .l,:ﬂ.gm.
it can be readily shown that w{ /1(5”)} has i-th
element
(33wl A) = ny ay A
Similarly, we have

AZ™ = AZ™ v, - 15
where lém = (/1(2@) igm /"L(GU’)’ is a hypothetical
value of A,
3.4) VA =1v, (AT v (AT - v, (A
and v /ISG) =0 Az 134, being evaluated at
,1!:/15(}), i=2, ..., g. The individual elements of

v,(iﬁo)) are given similarly to (3.3). Substituting
3.2) (3.4) (3.13  and
Ao = (A7 A A0 =g and Ulhg, Bi=l-

and into writing

w( A7) v ")B], we shall obtain

A" V!
(B33)Ay" T =Ko+ AL B+ UR . Pry+e.
Box [1980] calls the new explanatory variable U a
constructed variable. The testing of the null
hypothesis Hy: A=Ay against the alternative H;:
Azlg has become a choice between (3.5) and the
null model

(3.6) Ay = X+ AZM B e

Equivalently, we are testing Hy: y=0 against H,: v=0
in model (3.5}. To eliminate the dependence of U
on £ in (3.5) the former will be replaced by its least
squares estimate from the null model. Let & and

B be the feast squares estimates of o and B in

f}))

{
(3.6), the fitted values A 34" of A yA") can be

computed from (3.6) after replacing the regression
coeflicients by their least squares estimates, and the

()‘Ettl))

fitted values of ¥, 'can thus be determined

recursively by
@7 A=A ci=1, T

The fitted value #F, of y, can then be calculated

o

o

asing the inverse of the Box-Cox formula {1.1).
Substituting 4 3" and In 3, , into (3.3) we shall
get ﬁfr(/?flo)}and hence @()L{}O}), the least squares
estimate of W(/l(,m) , and finally

(3.8) O =—a (A" v



upon substituting ﬁ in U{Ap, B). Replacing U in
(3.5) by U gives
{)élJl) v (A-[”\r) ~

(3.9 Ay'™ T =Xa+AZ™ B+Uy+e
which satisfies the standard conditions of ordinary
least squares. The use of U 1o replace  the
unobservable U has been put forward by Milliken
et al. [1970] for two obvious reasons, namely, U
can be computed from the data and is independent
of the disturbance. The same tactic has also been
used in Andrews [1971]. Let S, and S, be the
residual sums of squares by least squares on the
regression equations (3.6) and (3.9} respectively. It
follows from the results of Milliken et al. [1970]
that the quantity

(Sy~ S, Vg
SHT—p=-2g+1
will follow a F-distribution with g and T-p-2g+1
degrees of freedom. Hence F is a test of the
hypothesis v=0 or A=,

F o=

(3.10)

A detailed development of the above results can be
found in Milliken et al. [1970] who have shown that
F has a F-distribution when Hy: v =0 is true. The
test is ‘exact’ in the sense that an ‘exact
significance will be obtained from which ‘exact’
confidence limits may be caiculated when H, is
true. However, little is known about F when T=#0.
See Ward et al. [1952]. Andrews [1971] has
pointed out that the precision in (3.9) may affect the
efficiency of the test but it will not affect the
‘exactness’ of the distribution of the test statistic.
The proposed procedure is therefore more capable
of capturing the correct size of the test than any
other asymptotic ones. For more discussion of other
advantages of the proposed procedure over
asymptotic ones; see Andrews [1971].

4, Computing Procedures

This  section briefly ountlines procedures for
computing the test statistic #. The procedures
described here assutme the use of a statistical
package. The steps are as follows:

g
[. Transform y and Z as in (1.2) to get Ay(’q[]) and

i
AZ™) and to form the regression equation
(3.6).
2. Estimate equation (3.6) by least squares to obtain

coefficient estimates & and B, and the error
- . 2
varlance estimate 5, , say.

[SIRNPN
3. Compute /n\.y{”—iﬂlm) =X& +AZM '8, from which

(A

calcuiate ¥, using the recursive relation

(3.7)and ¥ by the inverse Box-Cox formula.
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4, Compute L?J,(ﬂ,gm)by (3.3) using computed
values from step 3 and form the vector ﬁf(/lgm y.
Compute V(?x.(zm) using a formula similar to

{(3.3). Augment -ﬁf(/?.fm) and V( K;OJ)Q to form

U given in (3.8).

5. Form the regression (3.9 and estimate it by least
squares (o obtaln error variance estimate Sf,
say.

6. Finally calculate the test statistic £ in (3.10) by
putting Sy=(T-p-g+1) 5§ and §,=(T-p-2g+1) 5, .

When the package such as RATS used has built-in
testing procedure for the regression coefficient
vector, Steps 5 and 6 would be combined to one of
testing y=0 in the regression equation (3.9). The
null model is only used to compute the fitted values
U of the alternative model.

5. The Monte Carlo
Te evaluate our proposed F-test and to compare its
performance with that of the LR procedure Monte
Carlo models, coded in RATS, with combinations
of first differences and percentage changes are
performed. Sample sizes of 20, 30, 40, 60 and 100
are sclected so that both the small sample and
asymptotic properties can he studied. Each
experiment involves 2000 replications. The four
models studied are:
MOO: %Ay, = 0.01 + 0.9 %Az, + &, %Az, ~ U0,
0.07), & ~ N(0, 0.015%), z=1.0, y,=5.0
MO1: %Ay, = 0.01 + 0.03 Az, + &, Az, ~ U(-0.5,
L5}, &~ N0, 0.015%, 2y = 5.0, vy = 15.0
M10: Ay, = 100 + 55 %Az + &, Az, ~ U0, 0.07),
&~ N0, 1), zp= 10, vy = 100
MIL Ay,= 10+ 2 Az + g, Az, ~ U0, 2), & ~ N(0,
D), 25=10, vy =100

The population R are 593, 571, 553 and 371
respectively. MOO and MI1 have been used by
Seaks et al. [1990}. The models are tested under
each of the null hypotheses: Hy (A,=0,
A=0), (4,=0,4,=1), (A=1,4,=0) and (4,=1,4=1) in
turn, at 1%, 5% and 10% significance levels. The
empirical significance level is recorded, when the
null hypothesis is true this is the Type I error and
when the null is false this will be the power of the
relevant test.

A slight modification of Layson et al. {19847 result
gives the log likelthood function under normality;
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The RATS procedure MAXIMIZE is used i
compute the maximum likelihood estimate A of A
and to calcutate the LR test statistic
2 = - 2
Z- = 2”(7\-)"1(;\-0)] -~ AY(] .
Ho Sarople Size
PR 2 30 40 60 106
a0 F 0.8 L0 0% 0.8 0.9
LR 2.4 1.4 i.4 0.9 0.8
9 1 F 700 426 896 100 100
LR i4.3 58.7 96,2 100 100
i 0 F 34 952 ) 100 100
LR 314 955 100 109 100
i1 F 30 g 234 41D 65
LR 5.4 29.8 79.2 100 100
Table 1a: Size/Power at 1% Significance Level
When True Model is (4,;=0, 4,=0)
My Samptle Sive
Al Az 20 30 40 60 o)
a0 F 50 5.6 4.9 50 5.0
LR 4.8 4.3 3.8 3.7 4.5
[ F 233 70.6 97.5 100 100
LR 28.1 76.0 9.0 100 100
i 0 F 607 G8T 100 100 100
LR 520 987 100 100 LOO
i 1 F 124 270 441 646 796
LR 12.9 5(1.3 91.2 100 100
Table 1b: Size/Power at 5% Significance Level
When True Model is (A4,=0, A,=0)
Hu Sample Size
b A % 30 40 60 109
a4 0 F 9.4 10.5 9.9 10.0 9.6
LR 7.9 7.3 7.2 7.9 8.6
¢ 1 F 353 815 988 100 100
LR 366 841 995 10¢ 100
I 0 F 725 99.5 180 10G 160
LR 638 99.4 100 100 160
[ I F AN 38.6 370 74.2 85.3
LR 200 650.7 947 100 100

Table Lc: Size/Power at 10% Significance Level
When True Model is (4,=0, 1,=0)

While our F procedure took few seconds the TR
procedure took several minutes to few hours to
compiete 2000 replications even though the true
parameter values were used to start with. When
initial values other than the parameter values were
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used as nitial values the iatter often located the
optimal solution after several hundred iterations.

Tables la-ic give the size and power of
the tests for model MOO. The F-test appears
generally to capture the correct size while the LR
test oversiates the Type I error at the 1% level in
small samples and understate it at the 10% level for
all sample sizes. It does not appear to give the
correct size even for sample sizes as large as 100,
The twe procedures perform equaily well under
Hy {A=0, A=01)and Hy: (A,=1, 4=0). They both
lead to correct decision by rejecting the incorrect
nulis Hy (4,=0, A=1) when T260 and Hy: (A=1.
A=0) when T240 in all cases. When testing under
Hy: (A4,=1, =1} F appears less powertul than LR in
rejecting the incorrect null.

Ha Sampie Size

A s 20 30 40 60 100

G 0 F 118 522 85.8 G988 100
LR 124 539 99,2 1 100

G { F 0.8 £.0 {0 0.9 04
LR 1.6 13 i.0 0.8 1.4}

10 F 292 4.0 100 100 100
LR 34.8 96 .0 100 100 156

I 1 F 3.1 26.0 67.3 98.2 106
LR 3.6 38.6 100 160 106

Table 2a: Size/Power at 1% Significance Level
When True Model is (4,=0, A,=1)

Hy Sample Size

Ay Ax 20 30 40 60 0

0 0 F 284 7.1 96.0 G9.8 100
LR 25.1 6.7 {00 10 100

0t F 4.9 4.7 5.0 42 47
LR 2.8 3.8 4.7 4.9 4.1

1 0 F 5.1 9.4 100 100 100
LR 34.4 58.9 100 100 100

I 1 F i1.9 48.4 84.7 100 H
LR 11.0 47.6 {00 100 100

Fable 2b: Size/Power at 5% Signiticance Level
When True Model is (4,=0, =1

Hy Sample Size

A Az 20 30 40 40 LG

0 ¢ F 42.1 86.9 98.6 96.9 106
LR 344 98.4 100 100 106

0.1 F 9.3 9.4 97 9.0 89
LR 7.9 7.3 8.0 6.9 7.8

it 0 F 7id 99.8 100 100 ey
LR 66.7 99.4 160 100 100

I 1 F 0.7 613 91.3 100 100
LR 8.1 38.6 160 100 100

Table 2¢; Size/Power at 0% Significance Level
When True Madel is (4;=0, A=t}



The size and power for model MOl are given in
Tables 2a-2¢. The F procedure is seen again to state
the correct nominal size. On the other hand, LR
tends to overstate the size at the 1% level in small
samples and overstate it at the 5 and 0% levels for
atl sample sizes considered. The Type [ error of LR
by no means appear to converge to the nominal oae
even when the sample size is [00. When testing
under incorrect hypotheses, both test procedures
seemn to perform equally well in rejecting the
incorrect nuil. In some cases, a sample size of 40 is
sufficiently large to lead to rejection of wrong nuils
in 100% of the times.

Hy A=1. Ag=0 A=l Aoz
Test F LR F LR
20 0.7 1.9 37 4.4
Sample 30 0.8 1.3 2079 335
49 1.0 1.6 618 78.5
Size 60 (L9 1.1 99.5 100
10 0.9 1.0 106G {00

Table 3a: Size/Size/Power at 1% Significance
Level When True Model is (4;=1, A;=0)

Ho A=, Ag=0 A=t Az=t
Test F LR F LR
20 4.6 4.8 £53 0.3
Sample 30 4.7 ER. 46,1 52.0
i 4.7 4.8 837 90.4
Size [S38] 32 4.6 100 100
104 S 4.5 100 100

Table 3b: Size/Power at 5% Significance Level
When True Model is (=1, Ay=0)

Huy A=l Aa=0 A=l Aa=l
Test F LR F LR
20 0.2 7.8 258 6.3
Sample 30 9.6 73 588 al.3
40 9.5 8.7 913 94.0
Size 18] 0.3 7.9 160 100
0 9.9 9.4 100 100

Table 3¢: Size/Power at 10% Significance Level
When True Model is {4;=1, A=)

For model Mi0 the two tests are egually poweriul
when in fact the nuil were false. When the nufl is
Hy: (4,=0, 4,=0) or Hy: (A4=0, A=1) both of them
reject the incorrect null in all cases and therefore
results are not presented here. As visible from
Tables 3a-3¢ they do not appear to outperform the
other under the incorrect null H,;: (A= A=1).
They only differ in stating the size under the true
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null. F generally gives correct sizes at all levels
while LR overstates or understates it in most cases.

From Tables 4a-4c it can be seen that F yields Type
1 errovs that are very close to the nominal ones. In
contrast LR only produces close to stated sizes in
large samples. For example, its type I error s at
least two times the nominal value when TE40 at the
1 % level. When the null 1s Hy: (4=1, A=0) both
tests do not appear different n their ability of
rejecting the noll. When the null is Hy: (4,=0, A=0)
or Hy (A4;=0, =1}, both approaches reject the
wrong nuli in all of the cases,

Hp At A0 Ay, Aa=t
Test F LR F LR
20 19.2 288 1.3 2.5
Sample 30 83.6 8.8 1.1 3.4
40 97.0 98 4 I 2.0

Size 60 99.9 99.9 i i1
160 160 100 1.0 1.9

Table 4a: Size/Power at 1% Significance Level

When True Model is (4;=1, A;=1)

Hy A=t Aa=0 A=l Au=i
Test F LR B LR
20 427 447 6.9
Sample 30 G958 963 7.1
40 596 99.8 5.7
Size 60 G599 100 5.2 5.2
100 100 1) 51 50

Table 4b: Size/Power at 5% Significance Level

When True Model is (4;=1, A=1)

Ho A=l Ao=l} A=t A=t
Test F LR F LR
20 561 517 10.9 10.5
Sample 30 98,2 98.2 10.2 10.9
40 99.9 999 0.5 9.3
Size 60 100 10O 1 0.9
100 {00 100 10.1 9.4

Table 4¢: Size/Power at 10% Significance Level
When True Model is (4,=1, L=1)

6. Conclusion

We have derived an exact test for the parameter
vector of transformation in linear models. By
utilizing Taylor series approximations this reduces
to a choice between two regression equations. The
foregoing analysis need not specificaliy assume the
transformation parameters to be 0 or 1. Our



proposed test is thus applicable to any other
transformation parameter values though
mterpretation i straightforward when they are
equal to | or 0. The test statistic which has an exact
F-distribution can be easily calculated from these
two  regression  equations by least squares
algorithm. Monte Carlo resuits have demonstrated
that our proposed procedure is generally more
capable than the likelihood approach in stating the
correct size of the test, yet it is equally powerful o
the latter in rejecting false null hypotheses. It is
therefore a simple and ready alternative to the
likefihood ratio test for assessing the suitable
choice of the combination of first differences and
percentage changes in econometric forecast models,
thereby allowing more flexible and appropriate
economic relations be formulated and their validity
be tested.
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